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• What does computation mean in quantum circuits 
– Quantum parallelism – is it real?

• Deutsch’s problem for 1 qubit
– Deutsch’s circuit (algorithm)
– Analysis of the Deutsch circuit 

• Extension of the Deutsch algorithm to n-qubits: the Deutsch-Josza algorithm
– Analysis of the Deutsch-Josza circuit
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Agenda



• Simply stated, in a computational process, we want a quantum computer to take a number 𝑥 and produce 
another number 𝑓(𝑥) by way of some function 𝑓; we will  think of 𝑓 as applying a unitary 
transformation, 𝑈!. Furthermore, 𝑈! is reversible (in that it is its own inverse).

• We assume there is  an input register with 𝑛 qubits and  an output register with  𝑚 qubits in the 
computer.

• The action of  the operator 𝑈! on the  computational basis states ⟩|𝑥 " ⟩|𝑦 # of the input and output 
registers will be defined by

𝑈! | ⟩𝑥 " ⟩|𝑦 # = ⟩|𝑥 " ⟩|𝑦 ⊕ 𝑓(𝑥) # Eqn. (13.1).

• The symbol ⊕ is addition modulo-2 and is  equivalent to the exclusive OR operation we have already 
discussed. To illustrate its application, suppose in (13.1) the output register is 𝑦 = 0, then (13.1) reduces 
to 

𝑈! | ⟩𝑥 " ⟩|0 # = ⟩|𝑥 " ⟩|𝑓(𝑥) # Eqn. (13.2).
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Quantum Computational Process



• To demonstrate the invertibility of 𝑈!, we  operate with it in (13.1) twice as follows
𝑈!𝑈! ⟩|𝑥 ⟩|𝑦 = 𝑈! ⟩|𝑥 ⟩|𝑦 ⊕ 𝑓(𝑥) = ⟩|𝑥 ⟩|𝑦 ⊕ 𝑓(𝑥)⊕ 𝑓(𝑥) = ⟩|𝑥 ⟩|𝑦 Eqn. (13.3).

• Note that 𝑓 𝑥 ⊕ 𝑓 𝑥 = 0 by the definition of the exclusive OR operator we discussed in Lecture 10 
(see the truth table for the exclusive OR operator in that Lecture). Alternatively, adding the same bit twice 
and dividing by 2 leaves a remainder of xero.

• The Hadamard is one of the most important operators in quantum computing; it can be applied to 2-qubit 
and n-qubit states as follows
𝐻⊗𝐻 ⟩|0 ⟩⊗ |0 = 𝐻 ⟩|0 𝐻 ⟩|0 = !

"
⟩|0 + ⟩|1 !

"
⟩|0 + ⟩|1 = !

"
⟩|00 + ⟩|01 + ⟩|10 + ⟩|11 Eqn. (13.4).

• For an  n-qubit state (11.4) generalizes to 

𝐻⊗"| ⟩0 " =
%

& ⁄" #∑'()*&" ⟩|𝑥 " Eqn. (13.5).
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Quantum Computational Process



• From (13.4) and (13.5) we see that the Hadamard produces a superposition of the 2- or  n-qubit input and 
output registers.  If  we then apply the unitary operator 𝑈!, we see that the final state contains  many 
evaluations of the function 𝑓 at  once.  This is called quantum parallelism; it  doesn’t mean we have access 
to all the  results of the evaluation.  Measurement by the Born rule allows us to have only the values that 
collapse to the measurement basis. 

• Application of 𝑈! after 𝐻 proceeds as follows

𝑈! 𝐻⊗"⊗1# ⟩|0 " ⟩|0 # = %
& ⁄" #∑'()*&"𝑈! ⟩|𝑥 "| ⟩0 # Eqn. (13.6).

• If we apply 20 Hadamard gates to the input before application of the operator 𝑈!, then in theory the output 
will contain 2&' or over a million evaluations of the function 𝑓. These evaluations characterize the  state 
of the  output of the computation; measurement causes a collapse into the measurement  basis.
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Quantum Parallelism



• This problem is about an unknown  function 𝑓 whose inputs are deCined in {0,1} and  outputs in {0,1}. 
The question of interest is whether 𝑓 is balanced or constant.   Balanced means 𝑓(0) ≠ 𝑓(1) and constant 
means 𝑓 0 = 𝑓(1).

• The classical way to answer the question is to evaluate 𝑓 for the input 0 and input 1 and then check to see 
if  𝑓 0 = 𝑓 1 . At the minimum, one requires at least 2 evaluations: one for 𝑓(0) and another for 𝑓(1)
to be able to give an answer.  Deutsch wanted to know whether a quantum approach to the computation 
could answer the question more efficiently (fewer steps). In another words, with just fewer queries than 
the classical approach.

• This is an optimization problem, where the “cost function” is the number of queries to the operator 𝑈!.

• When the problem is framed  this way, we are using the quantum query complexity  model.  In this model, 
there  is a box 𝑈! and the interest is in how many times one must query the box to get a desired answer. 
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Deutsch’s Problem
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• We	want	an	oracle	(the	box)	𝑈) that	
can	be	questioned	to	determine	if	
function		𝑓 is	constant	or		balanced.		
The	truth	table	for	the	function	is	
shown	alongside	the	box	
representation	of	the	oracle.		

• The	oracle	performs	the		general	
computation	given	by	the	expression	
below.

𝑈) ⟩|𝑝 ⟩|𝑞 = ⟩|𝑝 ⟩|𝑞 ⊕ 𝑓(𝑝)

Definition of the Deutsch Problem
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• There are four distinct possible values the function can be. 

• If the  input is | ⟩0 ⊗ ⟩|0 the output is 𝑓! = ⟩|0 ⟩|𝑓(0) ;

• If the  input is ⟩|0 ⊗ ⟩|1 the output is 𝑓" = ⟩|0 ⟩|1 ⊕ 𝑓(0) ;

• If the  input is ⟩|1 ⊗ ⟩|0 the output is ⟩𝑓# = |1 ⟩|0 + 𝑓(1) ;

• If the  input is ⟩|1 ⊗ ⟩|1 the output is ⟩𝑓$ = |1 ⟩|1⊕ 𝑓(1) ;

• Different gates as illustrated could achieve the output 
results.  But we want a single circuit.  As we will see 
Deutsch achieved this goal by using  the Hadamard gate 
several times in his circuit.

Possible Gate Circuit Implementations  



• A quantum mechanical way to approach the problem is to recall (13.1). However, instead of 𝑓 having  just  
one qubit in  the  input  register, we provide  the input  in superposition of the possible inputs {0,1}; We 
replace ⟩|𝑥 in (13.1) with 𝛼 ⟩|0 + 𝛽 ⟩|1 and  assume the output ⟩|𝑦 is ⟩|0 .  When we  operate with 𝑈!, we 
expect the output to contain 𝑓(0) and 𝑓(1).  Thus
⟩|𝜓 +,- = 𝑈! 𝛼 ⟩|0 + 𝛽 ⟩|1 ⊗ ⟩|0 = α𝑈! ⟩|00 +𝛽𝑈! ⟩|10 = α ⟩|0 ⟩|𝑓(0) + β ⟩|1 ⟩|𝑓(1) Eqn. (13.7).

• Note that we have used the fact that because 𝑈! ⟩|00 = ⟩|0 ⟩|0 ⊕ 𝑓(0) we can write  0⊕ 𝑓 0 = 𝑓(0), 
and for   𝑈! ⟩|10 = ⟩|1 ⟩|0 ⊕ 𝑓(1) we can use 0⊕ 𝑓 1 = 𝑓(1) to arrive at the last  part of (11.7). 

• Measurement in the ⟩|0 or ⟩|1 basis collapses the state into that one of these bases and we still won’t 
have an answer to the original problem of whether  𝑓 is constant or balanced.

9

First  Trial Solution to Deutsch’s Problem



• The goal of Deutsch’s problem is to determined if 𝑓 is constant or balanced: meaning that 𝑓 0 = 𝑓 1 is 
constant,  and 𝑓(0) ≠ 𝑓1 is balanced.  The goal is equivalent to evaluating 𝑓 0 ⊕ 𝑓(1).  

• The constancy of 𝑓 is proven when we evaluate that  𝑓 0 ⊕ 𝑓 1 = 0.  The only way the result is zero is 
when both 𝑓(0) and 𝑓(1) evaluate to the same bit such that addition the same bit twice and dividing by 2 
leaves a remainder of zero.

• The function 𝑓 is balanced when 𝑓 0 ⊕ 𝑓 1 = 1.  This result is obtained when the evaluation of 𝑓(0)
leads  to a different bit from evaluation of  𝑓 1 . When two different bits are added and divided by 2, a 
remainder is left as indicated.

• These two arguments provide the evidence that what Deutsch set out to do is to evaluate 𝑓 0 ⊕ 𝑓 1 .
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A Preliminary to Deutsch’s Algorithm



• The circuit  that implements Deutsch’s algorithm is shown above. We explain how it works in the 
following slides.
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Circuit for Deutsch’s Algorithm 



• The state at the input of the circuit is  given by
| ⟩𝜓% = ⟩|01 Eqn. (13.7).

• After  the Hadamard, the  state of the system is given as 

| ⟩𝜓& = ⟩| + ⟩| − = %
&
| ⟩0 + ⌊ ⟩1 ⊗ %

&
| ⟩0 − ⌊ ⟩1 = %

&
| ⟩0 | ⟩0 − | ⟩0 | ⟩1 + | ⟩1 | ⟩0 − | ⟩1 | ⟩1 Eqn. (13.8)

• After applying the 𝑈! operator the function is given by 

| ⟩𝜓. = 𝑈! ⟩|𝜓& = %
&

M⟩|0 |𝑓(0) − ⟩|0 ⟩|1 ⊕ 𝑓(0) + ⟩|1 ⟩|𝑓 1 − ⟩|1 ⟩|1 ⊕ 𝑓(1) Eqn. (13.9).

• If the function  𝑓 is constant , then we have 𝑓 0 = 𝑓(1), which allows us to simplify (13.9)  to

•

⟩|𝜓# = !
"

,⟩|0 |𝑓(0) − ⟩|0 ⟩|1 ⊕ 𝑓(0) + ⟩|1 ⟩|𝑓 0 − ⟩|1 ⟩|1 ⊕ 𝑓(0)

= !
"

⟩|0 + ⟩|1 ⊗ ⟩|𝑓(0) − ⟩|0 + ⟩|1 ⊗ ⟩|1 ⊕ 𝑓(0)

= !
"

⟩|0 + ⟩|1 ⊗ ⟩| ⟩𝑓(0) − |1⊕ 𝑓(0)

= !
"

⟩| + ⊗ | ⟩𝑓(0) − ⟩|1 ⊕ 𝑓(0)

Eqn. (13.10).
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Analysis of the Deutsch Circuit 



• From (13.10), we see  that  the first   qubit has  been transformed to the  state ⟩| + .

• After the Hadamard, then the system state will be

| ⟩𝜓/ = 𝐻 O ⟩𝜓. = 𝐻 %
&

⟩| + ⊗ | ⟩𝑓(0) − ⟩|1 ⊕ 𝑓(0) = %
&

⟩|0 ⊗ ⟩𝑓(0) − ⟩|1 ⊕ 𝑓(0) Eqn. (13.11)

• If we now  measure the first qubit of (13.11) in the standard basis, the state will collapse to 0.
• If the function 𝑓 is balanced, then 𝑓(0) ≠ 𝑓(1) and 𝑓 0 ⊕ 1 = 𝑓(1) and 𝑓 1 ⊕ 1 = f(0), then (13.9) 

can be simplified to 

•

⟩|𝜓. = %
&

M⟩|0 |𝑓(0) − ⟩|0 ⟩|𝑓(1) + ⟩|1 ⟩|𝑓(1) − ⟩|1 ⟩|𝑓(0)

= %
&

⟩|0 − ⟩|1 ⊗ ⟩𝑓(0 − ⟩|0 − ⟩|1 ⊗ ⟩|𝑓(1)

= %
&

⟩|0 − ⟩|1 ⊗ ⟩|𝑓(0) − ⟩|𝑓(1)

= %
&

⟩| − ⊗ M|𝑓 0 − ⟩|𝑓1)

Eqn. (13.12)
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…Analysis of the Deutsch Circuit



• From (13.12), we see  that  the first   qubit has  been transformed to the  state ⟩| − .
• After passing through the Hadamard, it is clear that 

⟩|𝜓/ = %
&

⟩|1 ⊗ | ⟩𝑓(0) − ⟩|𝑓(1) Eqn.(13.13)

• We now see that the first  qubit has been transformed to 1.  When that  is followed by measurement in the 
standard basis, we are assured that we will get 1.

• From (13.1) and (13.13) after measurement with a standard basis the circuit outputs, respectively, a 0  
when 𝑓 is constant and a 1 when 𝑓 is balanced.

• The crucial point that Deutsch realized is that his algorithm can decide with just one query whether 𝑓 is 
constant or balanced.
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Analysis of the Deutsch Circuit



• The state vector ⟩| + and ⟩| − differ by 180+ phase (indicated  by the minus sign).

• We  investigate the action of 𝑈! on an input state that  has ⟩| − as a component, for example,

•

M𝑈! ⟩|𝑥 | − = %
&
𝑈! ⟩|𝑥 ⟩|0 − 𝑈! ⟩|𝑥 ⟩|1

= %
&

⟩|𝑥 ⟩|𝑓(𝑥) − ⟩|𝑥 ⟩|1 ⊕ 𝑓(𝑥)

= %
&

⟩|𝑥 ⊗ ⟩|𝑓(𝑥) − ⟩|1 ⊕ 𝑓(𝑥)

Eqn. (13.14).

• It  is possible that  𝑓 𝑥 = 0 or 𝑓 𝑥 = 1;  if 𝑓 𝑥 = 0 then the last result in (13.14) becomes

𝑈! ⟩|𝑥 ⟩| − = ⟩|𝑥 ⊗ %
&

⟩|0 − ⟩|1 = ⟩|𝑥 ⟩| − Eqn. (13.15)

• And if 𝑓 𝑥 = 1 then the last result in (11.14) becomes

𝑈! ⟩|𝑥 ⟩| − = ⟩|𝑥 ⊗ %
&

⟩|1 − ⟩|0 = ⟩−|𝑥 ⟩| − Eqn. (13.16).

• We can combine (13.15) and (13.16) and write 𝑈! ⟩|𝑥 ⟩| − = M−1 !())|𝑥 ⟩| − Eqn. (13.17).
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Utilizing a Phase Insight to Simplify Analysis 



• The state vector of the  circuit after the Hadamard can be re-written as

| ⟩𝜓& = ⟩| + ⟩| − = %
&

⟩|0 ⟩| − + ⟩|1 ⟩)| − , Eqn. (13.18), where  have not expanded ⟩| − .

• With the phase insight, the state vector, ⟩|𝜓. , after application of 𝑈! becomes (using (13.17)

| ⟩𝜓. = %
&

−1 !(') ⟩|0 ⟩| − + −1 !(%) ⟩|1 ⟩| − Eqn. (13.19)

• For 𝑓 constant, 𝑓 0 = 𝑓 1 ; we can therefore factor  out −1 !(') and rewrite (13.19)  as

| ⟩𝜓. = −1 !(') %
&

⟩|0 ⟩| − + ⟩|1 ⟩| − = −1 !(') ⟩| + ⟩| − Eqn.. (13.20)

• When we apply the  Hadamard the state vector ⟩|𝜓/ becomes
⟩|𝜓/ = −1 !(') ⟩|0 ⟩| − Eqn. (13.21).

• Measuring in the standard basis then yields 0 for the first qubit as before.
• Finally, when 𝑓 is balanced, 𝑓 0 ≠ 𝑓 1 , and we cannot factor out the −1;  we must now write ⟩|𝜓. as

| ⟩𝜓. = ± %
&

⟩|0 ⟩| − − ⟩|1 ⟩| − = ± ⟩| − ⟩| − Eqn. (13.22).
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Re-examining the Deutsch Circuit with Phase Insight



• Application of the last Hadamard to (13.22) gives us the expression for ⟩|𝜓/ as
⟩|𝜓/ = ± ⟩|1 ⟩| − Eqn. (13.23).

• Measurement in the standard basis gives us the first qubit as 1 with certainty.   This is the same result we 
obtained earlier.

• Deutsch’s  problem was posed to determine if  quantum computers could do some things more  efficiently 
than  classical computers.

• The question then was to find what is meant by more efficiently. It turns out, time of execution  is the 
relevant parameter, but not  the only one.

• What  Deutsch set out to  prove was the  query complexity  aspect of computing. In this case the quantum 
processor performed better; in  some problems this advantage  translates to a ”faster” execution time.
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Re-examining the Deutsch Circuit with Phase Insight



• Single qubit algorithms are not useful for anything interesting. An enhancement of the Deutsch algorithm 
that deals with multiple bit inputs is known as the  Deutsch-Josza algorithm. It is designed to determine 
the properties of functions that act in the manner 𝑓: 0,1 " → 0,1 ; 

• A typical problem for the Deutsch-Josza algorithm is to determine the if the 𝑛 − qubit function  
𝑓: 0,1 " → 0,1 is constant or balanced.  By constant  is meant  whether 𝑓(𝑥) is the same for all        
𝑥 ∈ 0,1 , and by balanced one means that 𝑓 𝑥 = 0 for half of the inputs 𝑥 ∈ 0,1 " and 𝑓 𝑥 = 1 for 
the other remaining  inputs.

• We will define the  oracle (black box) 𝑈! implementing the function 𝑓 as 𝑈!| ⟩𝑥 | ⟩𝑦 = | ⟩𝑥 | ⟩𝑦 ⊕ 𝑓(𝑥) .  
This time 𝑥 is an n-qubit string.

• The quantum circuit implementing the Deutsch-Josza algorithm is shown on the next slide.
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Deutsch-Josza Algorithm
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• This circuit is a generalization of the 
single bit Deutsch algorithm we already 
discussed.

• We divide the computational process 
into 4 stages as indicated with the state 
functions 𝜓2, 𝜓3, 𝜓4 and 𝜓5.

• Note that the action of 𝑈) on 𝑓 is 
defined in terms of standard basis: 

𝑈)| ⟩𝑥 | ⟩𝑦 = | ⟩𝑥 | ⟩𝑦 ⊕ 𝑓(𝑥)

Circuit implementation of the Deutsch-Josza Algorithm



• Beginning at the input of the circuit, we note that the state can be written as 

| ⟩𝜓% = | ⟩0 … | ⟩0 | ⟩1 = | ⟩0 ⊗"| ⟩1 Eqn. (13.23)
• After the Hadamard gates, we have  a new state, | ⟩𝜓& , given by the action of the Hadamard and the  

entanglement operator to yield
| ⟩𝜓& = 𝐻 ⟩|0 …⊗𝐻| ⟩0 ⊗𝐻| ⟩1 = | ⟩+ … | ⟩+ | ⟩− = | ⟩+ ⊗"𝐻| ⟩1 = | ⟩+ ⊗"| ⟩− Eqn. (13.24)

• To determine the state after the 𝑈! operator requires that we rewrite the | ⟩+ ⊗" in terms of the standard 
basis; thus

| ⟩+ ⊗" =
1

2
" | ⟩0 + | ⟩1 ⊗⋯⊗ | ⟩0 + | ⟩1 =

1
2"/&

[
)∈ ',% "

| ⟩𝑥

• In view of the above, we can now write | ⟩𝜓& as

| ⟩𝜓& = | ⟩+ ⊗"| ⟩− =
1
2"/&

[
)∈ ',% "

| ⟩𝑥 | ⟩− Eqn. (13.25)
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State Functions After Each Stage of the Circuit



• Since stage 3 is after the 𝑈! operator, we can use the phase kickback trick of −1 !()) to write the 
state| ⟩𝜓. as 

| ⟩𝜓. =
1
2"/&

[
)∈ ',% "

−1 !())| ⟩𝑥 | ⟩− Eqn. (13.26)

• Applying the last set of Hadamard gates to | ⟩𝜓. leads to the next state | ⟩𝜓/ , which we write as

| ⟩𝜓/ =
1
2"/&

[
)∈ ',% "

−1 !())𝐻⊗"| ⟩𝑥 | ⟩− Eqn. (13.27)

• Our next task is to figure out what exactly is meant by 𝐻⊗"| ⟩𝑥 in the expression above for arbitrary      
𝑥 ∈ 0,1 .
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Action of the 𝑼𝒇 Operator and the Hadamard



• Because 𝐻| ⟩0 = | ⟩+ 𝐻| ⟩1 = | ⟩− , for 𝑥% ∈ 0,1 , we can write 

𝐻| ⟩𝑥% =
1
2

[
5$∈ ',%

−1 )$5$ | ⟩𝑧% Eqn. (13.28)

• In general, we can now write

𝐻⊗"| ⟩𝑥 = 𝐻| ⟩𝑥% ⊗⋯⊗𝐻| ⟩𝑥" =
1

2 ⁄" & [
5$∈ ',%

−1 )$5$ | ⟩𝑧% ⊗⋯⊗ [
5"∈ ',%

−1 )"5" | ⟩𝑧" Eqn. (13.29)

• The expression above can be simplified to 

𝐻⊗"| ⟩𝑥 =
1

2 ⁄" & [
5$∈ ',% "

−1 )$5$7⋯)"5" | ⟩𝑧 Eqn. (13.30)
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Action of the Hadamard Operator after the 𝑼𝒇



• We note in passing that 𝑥%𝑧% +⋯𝑥"𝑧" = 𝑥. 𝑧 is essential the dot product, which is the power of the    
−1 ,whichwe now write as (−1)).5.  We only care when the exponent is even or odd.   This is the only 

time when we get −1 for an odd, or 1 for a even exponent.

• Combining this fact and the ones from the previous slide in Eqn. (13.30) allows us to write state | ⟩𝜓/ as

| ⟩𝜓/ =
1
2"/&

[
)∈ ',% "

−1 !())𝐻⊗"| ⟩𝑥 | ⟩−

=
1
2"/&

[
)∈ ',% "

−1 !()) 1
2 ⁄" & [

5$∈ ',% "

−1 ).5 | ⟩𝑧 | ⟩−

=
1
2" [

5∈{',%}"
[

5∈ ',% "

−1 ! ) 7).5 | ⟩𝑧 | ⟩−

Eqn. (13.31)
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Action of the Hadamard Operator after the 𝑼𝒇



• Before measurement, we can write the state | ⟩𝜓/ as 

| ⟩𝜓/ = −1 !()) [
5∈ ',% "

1
2"

[
)∈ ',% "

−1 ).5 | ⟩𝑧 | ⟩− Eqn. (13.32)

• The amplitude of | ⟩𝑧 = | ⟩0…0 up to a global phase −1 !()) is 

1
2"

[
)∈ ',% "

−1 ).'…' =
1
2"

[
)∈ ',% "

−1 ' =
1
2"

[
)∈ ',% "

1 =
1
2"
2" = 1 Eqn. (13.33)

• If 𝑓 is constant [𝑓 0 = 𝑓(1)], measuring the first 𝑛 qubits in the standard  basis will yield | ⟩0…0 with 
certainty.
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Analysis of the State | ⟩𝝍𝟒 𝐁𝐞𝐟𝐨𝐫𝐞 𝐚𝐧𝐝 𝐚𝐟𝐭𝐞𝐫 𝐌𝐞𝐚𝐬𝐮𝐫𝐞𝐦𝐞𝐧𝐭



• When the function 𝑓 is balanced [𝑓(0) ≠ 𝑓(1)], we cannot factor out the global phase term −1 !()) as 
we did for the case of 𝑓 being constant.

• As in our previous example for the case when | ⟩𝑧 = | ⟩0…0 , we can  begin with
1
2"

[
)∈ ',% "

(−1)! ) 7).'…' =
1
2"

[
)∈ ',% "

−1 !()) Eqn. (13.34)

• When 𝑓 is balanced, half the terms in the sum have 𝑓 𝑥 = 0 and half the terms have 𝑓 𝑥 = 1; the terms 
in the sum cancel.  The amplitude is therefore zero, which means we never see | ⟩0…0 in the final 
measurement.

• Our observations lead us to conclude that when the measurement outcome is 0" then output is constant; 
otherwise for any other n-bit measurement the output is balanced.
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Analysis of the State | ⟩𝝍𝟒 𝐁𝐞𝐟𝐨𝐫𝐞 𝐚𝐧𝐝 𝐚𝐟𝐭𝐞𝐫 𝐌𝐞𝐚𝐬𝐮𝐫𝐞𝐦𝐞𝐧𝐭



• Inputs to a black box 𝑈! which performs the transformation 
| ⟩𝑥 | ⟩𝑦 → | ⟩𝑥 | ⟩𝑦 ⊕ 𝑓(𝑥) for 𝑥 ∈ 0,…2"=% and for 𝑓(𝑥) ∈ 0,1

• The function 𝑓(𝑥) is either constant for al values of 𝑥 or else 𝑓(𝑥) is balanced, that is it is equal to 1 for 
half of all possible values of 𝑥 and is 0 for the other half of values of 𝑥.

• The outputs: 0 if and if 𝑓 is constant;  only one evaluation of 𝑈! is performed is needed and it always 
succeeds.

Steps:
1. Initialize state 
2. Created superpositions using Hadamard gates
3. Calculate 𝑓 using 𝑈!
4. Perform Hadamard transform
5. Measure to to obtain output
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Summary of the Deutsch-Josza Algorithm



• Quantum Computation 
– What does quantum parallelism mean

• Discussed Deutsch’s problem and his circuit 
– Introduced the phase insight for  simplifying quantum computational equations 

• Discussed some helpful things about the Hadamard operator
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Summary


